Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Am J Respir Crit Care Med ; 2023 Jun 13.
Article in English | MEDLINE | ID: covidwho-20244161

ABSTRACT

RATIONALE: Invasive pulmonary aspergillosis has emerged as a frequent coinfection in severe COVID-19, similarly to influenza; yet the clinical invasiveness is more debated. OBJECTIVES: We investigated the invasive nature of pulmonary aspergillosis in histology specimens of influenza and COVID-19 intensive care unit (ICU) fatalities in a tertiary care center. METHODS: In this monocentric, descriptive, retrospective case series we included adult ICU patients with PCR-proven influenza/COVID-19 respiratory failure that underwent postmortem examination and/or tracheobronchial biopsy during ICU admission from September 2009 until June 2021. Diagnosis of probable/proven viral-associated pulmonary aspergillosis (VAPA) was made based on the ICM-IAPA and ECMM/ISHAM-CAPA consensus criteria. All respiratory tissues were independently reviewed by two experienced pathologists. MEASUREMENTS AND MAIN RESULTS: In the 44 patients of the autopsy-verified cohort, 6 proven influenza-associated and 6 proven COVID-19-associated pulmonary aspergillosis diagnoses were identified. Fungal disease was identified as missed-diagnosis upon autopsy in 8% of proven cases (n=1/12), yet most frequently found as confirmation of probable antemortem diagnosis (n=11/21, 52%) despite receiving antifungal treatment. Bronchoalveolar lavage galactomannan testing showed highest sensitivity for VAPA diagnosis. Among both viral entities, an impeded fungal growth was the predominant histologic pattern of pulmonary aspergillosis. Fungal tracheobronchitis was histologically indistinguishable in influenza (n=3) and COVID-19 (n=3) cases, yet macroscopically more extensive at bronchoscopy in influenza setting. CONCLUSIONS: Proven invasive pulmonary aspergillosis diagnosis was found regularly and with a similar histological pattern in influenza and in COVID-19 ICU case-fatalities. Our findings highlight an important need for VAPA awareness with an emphasis on mycological bronchoscopic work-up. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

2.
Am J Kidney Dis ; 2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2255266

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is a subtype of thrombotic microangiopathy (TMA) characterized by a dysregulation of the alternative complement pathway. Here, we report a previously healthy 38-year-old woman in whom aHUS developed after a COVID-19 vaccine booster. One day after receipt of a booster dose of mRNA-1273 vaccine, she felt ill. Because of persistent headache, nausea, and general malaise, she went to her general practitioner, who referred her to the hospital after detecting hypertension and acute kidney injury. A diagnosis of TMA was made. Her treatment consisted of blood pressure control, hemodialysis, plasma exchange, and respiratory support. Kidney biopsy confirmed the diagnosis of acute TMA. The patient was referred for treatment with eculizumab, and kidney function improved after initiation of this therapy. Genetic analysis revealed a pathogenic C3 variant. SARS-CoV-2 infection as a trigger for complement activation and development of aHUS has been described previously. In addition, there is one reported case of aHUS occurring after receipt of the adenovirus-based COVID-19 vaccine ChAdOx1 nCoV-19, but, to our knowledge, this is the first case of aHUS occurring after a booster dose of an mRNA COVID-19 vaccine in a patient with an underlying pathogenic variant in complement C3. Given the time frame, we hypothesize that the vaccine probably was the trigger for development of aHUS in this patient.

3.
Lancet Respir Med ; 10(12): 1147-1159, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2221527

ABSTRACT

BACKGROUND: Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) affect about 15% of critically ill patients with influenza or COVID-19, respectively. These viral-fungal coinfections are difficult to diagnose and are associated with increased mortality, but data on their pathophysiology are scarce. We aimed to explore the role of lung epithelial and myeloid innate immunity in patients with IAPA or CAPA. METHODS: In this observational study, we retrospectively recruited patients who had been admitted to the intensive care unit (ICU) of University Hospitals Leuven, Belgium, requiring non-invasive or invasive ventilation because of severe influenza or COVID-19, with or without aspergillosis, between Jan 1, 2011, and March 31, 2021, whose bronchoalveolar lavage samples were available at the hospital biobank. Additionally, biobanked in vivo tracheobronchial biopsy samples from patients with IAPA or CAPA and invasive Aspergillus tracheobronchitis admitted to ICUs requiring invasive ventilation between the same dates were collected from University Hospitals Leuven, Hospital Network Antwerp (Belgium), and Amiens-Picardie University Hospital (France). We did nCounter gene expression analysis of 755 genes linked to myeloid innate immunity and protein analysis of 47 cytokines, chemokines, and growth factors on the bronchoalveolar lavage samples. Gene expression data were used to infer cell fractions by use of CIBERSORTx, to perform hypergeometric enrichment pathway analysis and gene set enrichment analysis, and to calculate pathway module scores for the IL-1ß, TNF-α, type I IFN, and type II IFN (IFNγ) pathways. We did RNAScope targeting influenza virus or SARS-CoV-2 RNA and GeoMx spatial transcriptomics on the tracheobronchial biopsy samples. FINDINGS: Biobanked bronchoalveolar lavage samples were retrieved from 166 eligible patients, of whom 40 had IAPA, 52 had influenza without aspergillosis, 33 had CAPA, and 41 had COVID-19 without aspergillosis. We did nCounter gene expression analysis on bronchoalveolar lavage samples from 134 patients, protein analysis on samples from 162 patients, and both types of analysis on samples from 130 patients. We performed RNAScope and spatial transcriptomics on the tracheobronchial biopsy samples from two patients with IAPA plus invasive Aspergillus tracheobronchitis and two patients with CAPA plus invasive Aspergillus tracheobronchitis. We observed a downregulation of genes associated with antifungal effector functions in patients with IAPA and, to a lesser extent, in patients with CAPA. We found a downregulated expression of several genes encoding proteins with functions in the opsonisation, recognition, and killing of conidia in patients with IAPA versus influenza only and in patients with CAPA versus COVID-19 only. Several genes related to LC3-associated phagocytosis, autophagy, or both were differentially expressed. Patients with CAPA had significantly lower neutrophil cell fractions than did patients with COVID-19 only. Patients with IAPA or CAPA had downregulated IFNγ signalling compared with patients with influenza only or COVID-19 only, respectively. The concentrations of several fibrosis-related growth factors were significantly elevated in the bronchoalveolar lavage fluid from patients with IAPA versus influenza only and from patients with CAPA versus COVID-19 only. In one patient with CAPA, we visualised an active or very recent SARS-CoV-2 infection disrupting the epithelial barrier, facilitating tissue-invasive aspergillosis. INTERPRETATION: Our results reveal a three-level breach in antifungal immunity in IAPA and CAPA, affecting the integrity of the epithelial barrier, the capacity to phagocytise and kill Aspergillus spores, and the ability to destroy Aspergillus hyphae, which is mainly mediated by neutrophils. The potential of adjuvant IFNγ in the treatment of IAPA and CAPA should be investigated. FUNDING: Research Foundation Flanders, Coronafonds, the Max Planck Society, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, "la Caixa" Foundation, and Horizon 2020.


Subject(s)
Aspergillosis , COVID-19 , Influenza, Human , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Humans , COVID-19/complications , Influenza, Human/complications , Influenza, Human/drug therapy , SARS-CoV-2 , Antifungal Agents/therapeutic use , Retrospective Studies , RNA, Viral , Pulmonary Aspergillosis/complications , Lung/pathology , Immunity, Innate , Invasive Pulmonary Aspergillosis/complications
4.
Res Pract Thromb Haemost ; 6(7): e12826, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2148464

ABSTRACT

Background: Thromboinflammation plays a central role in severe COVID-19. The kallikrein pathway activates both inflammatory pathways and contact-mediated coagulation. We investigated if modulation of the thromboinflammatory response improves outcomes in hospitalized COVID-19 patients. Methods: In this multicenter open-label randomized clinical trial (EudraCT 2020-001739-28), patients hospitalized with COVID-19 were 1:2 randomized to receive standard of care (SOC) or SOC plus study intervention. The intervention consisted of aprotinin (2,000,000 IE IV four times daily) combined with low molecular weight heparin (LMWH; SC 50 IU/kg twice daily on the ward, 75 IU/kg twice daily in intensive care). Additionally, patients with predefined hyperinflammation received the interleukin-1 receptor antagonist anakinra (100 mg IV four times daily). The primary outcome was time to a sustained 2-point improvement on the 7-point World Health Organization ordinal scale for clinical status, or discharge. Findings: Between 24 June 2020 and 1 February 2021, 105 patients were randomized, and 102 patients were included in the full analysis set (intervention N = 67 vs. SOC N = 35). Twenty-five patients from the intervention group (37%) received anakinra. The intervention did not affect the primary outcome (HR 0.77 [CI 0.50-1.19], p = 0.24) or mortality (intervention n = 3 [4.6%] vs. SOC n = 2 [5.7%], HR 0.82 [CI 0.14-4.94], p = 0.83). There was one treatment-related adverse event in the intervention group (hematuria, 1.49%). There was one thrombotic event in the intervention group (1.49%) and one in the SOC group (2.86%), but no major bleeding. Conclusions: In hospitalized COVID-19 patients, modulation of thromboinflammation with high-dose aprotinin and LMWH with or without anakinra did not improve outcome in patients with moderate to severe COVID-19.

5.
Front Immunol ; 13: 861251, 2022.
Article in English | MEDLINE | ID: covidwho-2080128

ABSTRACT

COVID-19 is characterised by a broad spectrum of clinical and pathological features. Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we analysed the phenotype and activity of NK cells in the blood of COVID-19 patients using flow cytometry, single-cell RNA-sequencing (scRNA-seq), and a cytotoxic killing assay. In the plasma of patients, we quantified the main cytokines and chemokines. Our cohort comprises COVID-19 patients hospitalised in a low-care ward unit (WARD), patients with severe COVID-19 disease symptoms hospitalised in intensive care units (ICU), and post-COVID-19 patients, who were discharged from hospital six weeks earlier. NK cells from hospitalised COVID-19 patients displayed an activated phenotype with substantial differences between WARD and ICU patients and the timing when samples were taken post-onset of symptoms. While NK cells from COVID-19 patients at an early stage of infection showed increased expression of the cytotoxic molecules perforin and granzyme A and B, NK cells from patients at later stages of COVID-19 presented enhanced levels of IFN-γ and TNF-α which were measured ex vivo in the absence of usual in vitro stimulation. These activated NK cells were phenotyped as CD49a+CD69a+CD107a+ cells, and their emergence in patients correlated to the number of neutrophils, and plasma IL-15, a key cytokine in NK cell activation. Despite lower amounts of cytotoxic molecules in NK cells of patients with severe symptoms, majority of COVID-19 patients displayed a normal cytotoxic killing of Raji tumour target cells. In vitro stimulation of patients blood cells by IL-12+IL-18 revealed a defective IFN-γ production in NK cells of ICU patients only, indicative of an exhausted phenotype. ScRNA-seq revealed, predominantly in patients with severe COVID-19 disease symptoms, the emergence of an NK cell subset with a platelet gene signature that we identified by flow and imaging cytometry as aggregates of NK cells with CD42a+CD62P+ activated platelets. Post-COVID-19 patients show slow recovery of NK cell frequencies and phenotype. Our study points to substantial changes in NK cell phenotype during COVID-19 disease and forms a basis to explore the contribution of platelet-NK cell aggregates to antiviral immunity against SARS-CoV-2 and disease pathology.


Subject(s)
COVID-19 , Humans , Granzymes/metabolism , Perforin/metabolism , Interleukin-15/metabolism , Interleukin-18/metabolism , SARS-CoV-2 , Tumor Necrosis Factor-alpha/metabolism , Blood Platelets/metabolism , Integrin alpha1/metabolism , Killer Cells, Natural , Cytokines/metabolism , Chemokines/metabolism , Interleukin-12/metabolism , Antiviral Agents/metabolism , RNA/metabolism
6.
EBioMedicine ; 83: 104195, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2035960

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the angiotensin-converting enzyme 2 (ACE2) receptor, a critical component of the kallikrein-kinin system. Its dysregulation may lead to increased vascular permeability and release of inflammatory chemokines. Interactions between the kallikrein-kinin and the coagulation system might further contribute to thromboembolic complications in COVID-19. METHODS: In this observational study, we measured plasma and tissue kallikrein hydrolytic activity, levels of kinin peptides, and myeloperoxidase (MPO)-DNA complexes as a biomarker for neutrophil extracellular traps (NETs), in bronchoalveolar lavage (BAL) fluid from patients with and without COVID-19. FINDINGS: In BAL fluid from patients with severe COVID-19 (n = 21, of which 19 were mechanically ventilated), we observed higher tissue kallikrein activity (18·2 pM [1·2-1535·0], median [range], n = 9 vs 3·8 [0·0-22·0], n = 11; p = 0·030), higher levels of the kinin peptide bradykinin-(1-5) (89·6 [0·0-2425·0], n = 21 vs 0·0 [0·0-374·0], n = 19, p = 0·001), and higher levels of MPO-DNA complexes (699·0 ng/mL [66·0-142621·0], n = 21 vs 70·5 [9·9-960·0], n = 19, p < 0·001) compared to patients without COVID-19. INTERPRETATION: Our observations support the hypothesis that dysregulation of the kallikrein-kinin system might occur in mechanically ventilated patients with severe pulmonary disease, which might help to explain the clinical presentation of patients with severe COVID-19 developing pulmonary oedema and thromboembolic complications. Therefore, targeting the kallikrein-kinin system should be further explored as a potential treatment option for patients with severe COVID-19. FUNDING: Research Foundation-Flanders (G0G4720N, 1843418N), KU Leuven COVID research fund.


Subject(s)
COVID-19 , Kallikrein-Kinin System , Angiotensin-Converting Enzyme 2 , Bradykinin , Bronchoalveolar Lavage Fluid , Humans , Kallikreins/metabolism , Peroxidase/metabolism , SARS-CoV-2 , Tissue Kallikreins/metabolism
7.
Res Pract Thromb Haemost ; 6(3): e12683, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1772842

ABSTRACT

Background: Venous thromboembolism (VTE) frequently occurs in hospitalized patients with coronavirus disease 2019 (COVID-19). The optimal dose of anticoagulation for thromboprophylaxis in COVID-19 is unknown. Aims: To report VTE incidence and bleeding before and after implementing a hospital-wide intensified thromboprophylactic protocol in patients with COVID-19. Methods: On March 31, 2020, we implemented an intensified thromboprophylactic protocol consisting of 50 IU anti-Xa low molecular weight heparin (LMWH)/kg once daily at the ward, twice daily at the intensive care unit (ICU). We included all patients hospitalized in a tertiary care hospital with symptomatic COVID-19 between March 7 and July 1, 2020. The primary outcome was the incidence of symptomatic or subclinical VTE and major bleeding during admission. Routine ultrasound screening for VTE was performed whenever logistically possible. Results: We included 412 patients, of which 116 were admitted to the ICU. Of 219 patients with standard a prophylactic dose of LMWH, 16 (7.3%) had VTE, 10 of which were symptomatic (4.6%). Of 193 patients with intensified thromboprophylaxis, there were no symptomatic VTE cases, three incidental deep venous thrombosis cases (1.6%), and one incidental pulmonary embolism (0.5%). The major bleeding rate was 1.2% in patients with intensified thromboprophylaxis and 7.7% when therapeutic anticoagulation was needed. Conclusion: In hospitalized patients with COVID-19, there were no additional symptomatic VTEs and a reduction in incidental deep vein thrombosis after implementing systematic thromboprophylaxis with weight-adjusted prophylactic (ward) to intermediate (ICU), but not therapeutic dosed anticoagulation. This intensified thromboprophylaxis was associated with a lower risk of major bleeding compared with therapeutic dosed anticoagulation.

8.
JCI Insight ; 7(1)2022 01 11.
Article in English | MEDLINE | ID: covidwho-1523122

ABSTRACT

Neutrophils are recognized as important circulating effector cells in the pathophysiology of severe coronavirus disease 2019 (COVID-19). However, their role within the inflamed lungs is incompletely understood. Here, we collected bronchoalveolar lavage (BAL) fluids and parallel blood samples of critically ill COVID-19 patients requiring invasive mechanical ventilation and compared BAL fluid parameters with those of mechanically ventilated patients with influenza, as a non-COVID-19 viral pneumonia cohort. Compared with those of patients with influenza, BAL fluids of patients with COVID-19 contained increased numbers of hyperactivated degranulating neutrophils and elevated concentrations of the cytokines IL-1ß, IL-1RA, IL-17A, TNF-α, and G-CSF; the chemokines CCL7, CXCL1, CXCL8, CXCL11, and CXCL12α; and the protease inhibitors elafin, secretory leukocyte protease inhibitor, and tissue inhibitor of metalloproteinases 1. In contrast, α-1 antitrypsin levels and net proteolytic activity were comparable in COVID-19 and influenza BAL fluids. During antibiotic treatment for bacterial coinfections, increased BAL fluid levels of several activating and chemotactic factors for monocytes, lymphocytes, and NK cells were detected in patients with COVID-19 whereas concentrations tended to decrease in patients with influenza, highlighting the persistent immunological response to coinfections in COVID-19. Finally, the high proteolytic activity in COVID-19 lungs suggests considering protease inhibitors as a treatment option.


Subject(s)
Bacterial Infections , Bronchoalveolar Lavage Fluid , COVID-19 , Coinfection , Influenza, Human , Adult , Aged , Bacterial Infections/complications , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/pathology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/complications , COVID-19/diagnosis , COVID-19/immunology , COVID-19/pathology , Coinfection/immunology , Coinfection/metabolism , Coinfection/pathology , Cytokines/analysis , Female , Humans , Inflammation , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/immunology , Influenza, Human/pathology , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Middle Aged
9.
Semin Thromb Hemost ; 47(4): 362-371, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1203471

ABSTRACT

BACKGROUND: Venous thromboembolism (VTE) is a frequent complication of COVID-19, so that the importance of adequate in-hospital thromboprophylaxis in patients hospitalized with COVID-19 is well established. However, the incidence of VTE after discharge and whether postdischarge thromboprophylaxis is beneficial and safe are unclear. In this prospective observational single-center study, we report the incidence of VTE 6 weeks after hospitalization and the use of postdischarge thromboprophylaxis. METHODS: Patients hospitalized with confirmed COVID-19 were invited to a multidisciplinary follow-up clinic 6 weeks after discharge. D-dimer and C-reactive protein were measured, and all patients were screened for deep vein thrombosis with venous duplex-ultrasound. Additionally, selected high-risk patients received computed tomography pulmonary angiogram or ventilation-perfusion (V/Q) scan to screen for incidental pulmonary embolism. RESULTS: Of 485 consecutive patients hospitalized from March through June 2020, 146 patients were analyzed, of which 39% had been admitted to the intensive care unit (ICU). Postdischarge thromboprophylaxis was prescribed in 28% of patients, but was used more frequently after ICU stay (61%) and in patients with higher maximal D-dimer and C-reactive protein levels during hospitalization. Six weeks after discharge, elevated D-dimer values were present in 32% of ward and 42% of ICU patients. Only one asymptomatic deep vein thrombosis (0.7%) and one symptomatic pulmonary embolism (0.7%) were diagnosed with systematic screening. No bleedings were reported. CONCLUSION: In patients who had been hospitalized with COVID-19, systematic screening for VTE 6 weeks after discharge revealed a low incidence of VTE. A strategy of selectively providing postdischarge thromboprophylaxis in high-risk patients seems safe and potentially effective.


Subject(s)
C-Reactive Protein/metabolism , COVID-19 , Fibrin Fibrinogen Degradation Products/metabolism , Patient Discharge , SARS-CoV-2/metabolism , Venous Thromboembolism , COVID-19/blood , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , Pulmonary Embolism/blood , Pulmonary Embolism/etiology , Pulmonary Embolism/mortality , Pulmonary Embolism/prevention & control , Venous Thromboembolism/blood , Venous Thromboembolism/etiology , Venous Thromboembolism/mortality , Venous Thromboembolism/prevention & control , Venous Thrombosis/blood , Venous Thrombosis/etiology , Venous Thrombosis/mortality , Venous Thrombosis/prevention & control
11.
Dig Endosc ; 32(5): 723-731, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-116360

ABSTRACT

On March 11, 2020 the World Health Organization declared COVID-19 pandemic, leading to a subsequent impact on the entire world and health care system. Since the causing Severe Acute Respiratory Syndrome Coronavirus 2 houses in the aerodigestive tract, activities in the gastrointestinal outpatient clinic and endoscopy unit should be limited to emergencies only. Health care professionals are faced with the need to perform endoscopic or endoluminal emergency procedures in patients with a confirmed positive or unknown COVID-19 status. With this report, we aim to provide recommendations and practical relevant information for gastroenterologists based on the limited amount of available data and local experience, to guarantee a high-quality patient care and adequate infection prevention in the gastroenterology clinic.


Subject(s)
Coronavirus Infections/prevention & control , Endoscopy, Gastrointestinal/standards , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Occupational Health , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Practice Guidelines as Topic/standards , COVID-19 , Emergencies , Endoscopy, Gastrointestinal/methods , Female , Humans , Infection Control/methods , Male , Patient Safety , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL